2次方程式


  参考ページ 
  ~中学校までの2次方程式~
  二次方程式の基本を学びたい人は1次方程式・2次方程式の基礎
  二次方程式の展開を学びたい人は2次方程式の展開の手法
  中学校の因数分解を学びたい人はたすきがけしない!簡単因数分解

  ~10秒数学ゲーム~ new!
  中学校までの因数分解を10秒で解く練習をしたい人は10秒数学トレーニング

  ~高校からの2次方程式~
  高校生の複雑な因数分解を学びたい人はたすきがけしない!複雑な因数分解
  さらに速く楽に解くコツを学びたい人は因数分解は最初にまとめよう
  二次方程式を解くやり方を学びたい人は複雑な2次方程式の答えを求める
  平方完成の式変形・公式を学びたい人は平方完成の式変形
  解の公式の暗記法・証明を学びたい人は解の公式の証明と覚え方
  無理やり因数分解する策を学びたい人は解の公式を用いて因数分解をする!?
  解と係数の関係を意味から学びたい人は解と係数の関係と対称式



 さて、今までは x2の係数が1のものだけ、すなわち x2+bx+c の形のものだけを扱ってきたわけですが、 一般には x2の係数が1だとは限らず、2だったり5だったりとするわけです。ここで一般の2次方程式における因数分解を学びましょう。



  <因数分解の画像が表示されていません!>     3x2+10x+3 の式を因数分解することを考えます。

  x2の係数が1でない、といっても基本的には今までと同様に計算を行います。
しかし、因数分解をした際のカッコの中に含まれる x の係数が今までと異なり「1」とは限りません。そこで次の様な図を考えて下さい。


先ずは今までと同様にx2定数項 に着目をします。先程までは意識の薄かったであろうx2にもきちんと注意する必要があります。
右図では因数分解全体の意識の置き方を説明しています。因数分解した際のカッコの中に含まれる x の項・定数項同士の掛け算がそれぞれ、もとの展開した形の式の x2 と 定数項をそれぞれ形成することになります。


その点に注意すると、因数分解した際のカッコの中は 、元の式のx2・定数項の素因数分解した値が入るということになります。
今回の問題を見てみるとx2の係数はになっています。しかし、2つの数の掛け算で3を作る方法は1×3の1通りだけですね?

  <因数分解の画像が表示されていません!>   よって右図のように
   3x2+10x+3 = (x   )(3x   )   < (3x   )(x   )でも可 >
という形で表記できます。まずはここまで解答用紙に書いてしまいましょう。

さらにこの際にもう一つ注意しなくてはいけないのが、右図の内容です。すなわち元の式の x の係数に帳尻を合わせるということです。
ここが因数分解の一番の難点ともいえるでしょう。 x2・x・定数項の値がピタリと一致すれば因数分解が終了します。

  <因数分解の画像が表示されていません!>      さてそれでは答えの形が(x   )(3x   ) と分かったところで x の係数が一致するように定数項の掛け算の方法を考えます。基本的には考え方としては 今までと同様ですね?定数項の値が掛けて3になるように、ということを考えると1×3しかありませんからこの値がどちらの空欄に入ればよいか考えます。
また今までと同様に x の項・定数項がそれぞれ正か負かを注意しておきましょう。


  <因数分解の画像が表示されていません!>      1と3を代入すれば良いわけですが、内側同士・外側同士の掛け算の結果の合計が x の項になるということには注意しましょう。 そしてこの計算を頭の中で出来るように今後心がけて下さい。慣れてくれば暗算でも素早く計算出来るようになります。
掛け算の合計が 10x になる組み合わせを考えると、 (x+3)(3x+1)が答えだと分かります。




  <因数分解の画像が表示されていません!>     3x2-8x+4 の式を因数分解することを考えます。

  もう一問練習することにします。最初に行う操作はなんだったか、というとまず x2 の項について考える、ということでしたね?3=1×3ということを踏まえると、 因数分解した際のxの前に付く係数は先程の問題と同じで一意に決まります。
よって右上図のように
   3x2-8x+4 = (x   )(3x   )
という形で表記できます。まずはここまで解答用紙に書いてしまいましょう。


  <因数分解の画像が表示されていません!>    さてそれでは残りの空欄部分にも数値を入れていきます。そこで何を考えるかというと次に定数項について考えるということをしていました。
定数項の値 4 を作るためにはどういった掛け算で表せるか?というと
    1 × 4 = 4
    2 × 2 = 4
の2通りの組み合わせがあります。


  <因数分解の画像が表示されていません!>    上で得た二つの組を用いて最後に正負を考えながら候補となる値を代入しxの係数に揃えるということを行えば良いのです。 x の係数が負であることに注意しておきましょう。
全部で右図で示されたような代入方法がありますが、右図のこれらの計算を暗算で行いましょう。そして -8x となれば良いのです。
掛け算の合計が -8x になる組み合わせを考えると、 (x-2)(3x-2) が答えだと分かります。




  <因数分解の画像が表示されていません!>     5x2+7x-6 の式を因数分解することを考えます。

  さらにもう一問練習することにします。最初に行う操作はなんだったか、というとまず x2 の項について考える、ということでしたね?5=1×5ということを踏まえると、 因数分解した際のxの前に付く係数は先程の問題と同じで一意に決まります。
よって右上図のように
   5x2+7x-6 = (x   )(5x   )
という形で表記できます。まずはここまで解答用紙に書いてしまいましょう。


  <因数分解の画像が表示されていません!>    さてそれでは残りの空欄部分にも数値を入れていきます。そこで何を考えるかというと次に定数項について考えるということをしていました。
定数項の値 6を作るためにはどういった掛け算で表せるか?というと
    1 × 6 = 6
    2 × 3 = 6
の2通りの組み合わせがあります。ここで得た二つの組を用いて最後に正負を考えながら候補となる値を代入しxの係数に揃えるということを行えば良いのです。
定数項の値が負であることを考慮すれば、今回は内側同士・外側同士の掛け算の結果の差を考える必要がありますので注意しておきましょう。 全部で右上図で示されたような代入方法がありますが、右上図のこれらの計算を暗算で行いましょう。そして +7x(差が7) となれば良いのです。


  <因数分解の画像が表示されていません!>    差が7となるためには空欄の中にはそれぞれ(2と3)が代入される必要があります。
さらに正負に注意して、掛け算の合計が +7x になる組み合わせを考えると (x+2)(5x-3) が答えだと分かります。




 これで紹介したい因数分解の解き方をおおよそ紹介したことになりますが、ついてこれていますでしょうか?
下に練習問題を用意しましたので是非取り組んでみて下さい。

  因数分解:例題 
    3x2-10x+3 の式を因数分解しなさい。

  3x2-10x+3 = (x - 3)(3x - 1)



    2x2+7x+6 の式を因数分解しなさい。

  2x2+7x+6 = (x + 2)(2x + 3)



    2x2-x-3 の式を因数分解しなさい。

  2x2-x-3 = (x + 1)(2x - 3)



    5x2-19x+12 の式を因数分解しなさい。

  5x2-19x+12 = (x - 3)(5x - 4)



    7x2-10x-8 の式を因数分解しなさい。

  7x2-10x-8 = (x - 2)(7x + 4)



    11x2-10x-24 の式を因数分解しなさい。

  11x2-10x-24 = (x - 2)(11x + 12)




  <因数分解の画像が表示されていません!>     6x2-13x+6 の式を因数分解することを考えます。

  今までは実はx2の係数が2・3・5・7・11・・・といった素数の場合の問題ばかりを考えてきましたが、今回は6という素数ではない値になっています。
「何が違うの?」と感じる方もいるでしょうが、大分計算の煩雑さが変わってきます。一旦今までの内容を復習してみましょう。


  因数分解・x2の値における分別 
・最初はx2の係数が1だった場合を考えていました。しかし、1を2つの数の掛け算で表すと
    1 × 1 = 1
の1通りの組み合わせしかなく、答えの形も
   x2+bx+c = (x   )(x   )
とすぐに分かりました。



・このページで今まで紹介してきたものをみると、例えばx2の係数が7(素数)等を考えてきました。しかし、7を2つの数の掛け算で表すと
    1 × 7 = 7
の1通りの組み合わせしかなく、上の係数が1だった場合と同様に答えの形も
   7x2+bx+c = (x   )(7x   )
とすぐに分かりました。



・そこで新たに紹介するのが素数でない場合で、例えばx2の係数が6等の時です。このとき、6を2つの数の掛け算で表すと
    1 × 6 = 6
    2 × 3 = 6
の2通りの組み合わせがあるため、どちらの組み合わせか分かりません。なので答えの形は
  <因数分解の画像が表示されていません!>      6x2+bx+c = ( x   )(6x   )
   6x2+bx+c = (2x   )(3x   )
の2通りがありうるため、直ぐに答えの形を書くことはできないのです。



 今までの問題との違いが分かったでしょうか?よって今回は ( x   )(6x   ) と    (2x   )(3x   ) の両方のケースを視野に入れなくてはいけない、ということです。
なので例えば最初は ( x   )(6x   ) を仮定して計算してみて、それで答えが見つかりそうになければ、もう一方の仮定に切り替える、ということを してやる必要がある、ということです。

 ただどちらを仮定すべきか?という話なのですが、これはあくまで私の経験則ですが、 掛け算の2つの組の差が小さいものほど先に仮定してみると良い です。
つまり今回の問題のケースですと (2x   )(3x   ) を仮定してみて、だめだったら (x   )(6x   ) を仮定にした方が良いということです。(あくまで経験則ですが)
例えばもし 12x2+11x-5 の因数分解であれば 12 = 1 × 12 = 2 × 6 = 3 × 4 なので
    1:  (3x   )( 4x   )
    2:  (2x   )( 6x   )
    3:  ( x   )(12x   )
の順番で調べるのが良いでしょう。

  <因数分解の画像が表示されていません!>    さて実際に (2x   )(3x   ) を仮定して 6x2-13x+6 の因数分解を考えてみましょう。
この後の操作は今までの解き方とまったく同様です。定数項の値 6を作るためにはどういった掛け算で表せるか?というと
    1 × 6 = 6
    2 × 3 = 6
の2通りの組み合わせがあります。なので上図のように実際に代入して x の項が -13x になる解があるかどうか考えてみて下さい。
すると (2x-3)(3x-2) が答えだと分かりましたので終了です。ここで答えが見つからなければ (x   )(6x   ) を仮定してみれば良い、ということです。




 以上で一般の因数分解の説明を終了いたします。ここでは一切紹介しませんでしたが、一般の教科書ではたすき掛け等の解説が載っていることと思いますが、 自慢じゃありませんが、こちらで紹介した方法の方が早いです!因数分解の計算は早いに越したことはありません。計算精度はどうなの?と思う方もおられるでしょうが計算精度も高いです。
また自分の因数分解した答えの結果に自身がなければ、確かめ計算をすればいいのです。何をすれば良いのかと言うと、自分で出した答えを展開して元の式になればよいのです。展開と因数分解は逆の操作なのですから。速く解けるほど この確かめ計算をする時間も確保出来る、ということになるのです。最初は慣れないかも知れませんが、頭の体操だと思って暗算で素早く解く練習をしてみましょう。
以下の総合問題に取り組んでみて下さい。

  因数分解:例題 
    4x2+8x+3 の式を因数分解しなさい。

  4x2+8x+3 = (2x + 3)(2x + 1)



    9x2-12x+4 の式を因数分解しなさい。

  9x2-12x+4 = (3x - 2)(3x - 2) = (3x - 2)2



    6x2-x-2 の式を因数分解しなさい。

  6x2-x-2 = (2x + 1)(3x - 2)



    6x2-37x+6 の式を因数分解しなさい。

  6x2-37x+6 = (x - 6)(6x - 1)



    12x2+11x-5 の式を因数分解しなさい。

  12x2+11x-5 = (3x - 1)(4x + 5)



    12x2+7x-5 の式を因数分解しなさい。

  12x2+7x-5 = (x + 1)(12x - 5)


 以上で因数分解についての解説を終了いたします。因数分解も慣れてくれば、上の問題も5秒以下で解答出来るようになりますし、後に3次方程式等の因数分解をする必要が出てきた時にも役立ちます。 基本となる計算だからこそ大切にして、かつ時間を掛けずに解けるようになりましょう。