数列


  参考ページ 
  〜数列って何??〜
  数列を基礎・根本から学びたい人は数列の種類とanの表記方法

  〜等差数列〜
  等差数列を基本から学びたい人は等差数列の公式と速く解く手法
  視覚的な等差数列を学びたい人はグラフで理解する等差数列

  〜等比数列〜
  等比数列を基本から学びたい人は等比数列の公式と速く解く手法
  視覚的な等比数列を学びたい人はグラフで理解する等比数列

  〜数列の和〜
  シグマ記号って何?という人はシグマの表記方法と意味・計算方法
  等差数列の和を学びたい人は等差数列の和と公式・証明
  等比数列の和を学びたい人は等比数列の和と公式・証明



 さて、今までは数列の一般項anを求めるということをひたすら行ってきました。
しかし今回からうって変わって数列の和という話に入ります。



まずはじめに・・・ということなのですが、下記のΣ(シグマ)という表現に慣れてください。
  <数列の画像が表示されていません!>  
これだけみると何のことだか分からないと思います。Σという記号の上・下・右にそれぞれ数字やらついていますが、この式の意味としては
   akという式に、k=1からk=5の数字を代入して足し合わせる
ということです。
以下の式を見るとよりわかりやすいかもしれません。

  <数列の画像が表示されていません!>  


上の式の場合には
   akという式に、k=3からk=7の数字を代入して足し合わせる
ということなので、このような式になります。
なんとなくのΣの計算方法は分かりましたか?まだ掴みきれていない人も多いと思うので具体的に数字を代入したときのことを考えてみます。



  <数列の画像が表示されていません!>  の解を求めよ。 ただしak = 2k - 1とする


何か公式を知っている人もいるかも知れませんが、定義に忠実に考えてみます。
  <数列の画像が表示されていません!>  
今回の問題の場合にはakという式に、k=1からk=5の数字を代入して足し合わせるということになるので 計算すると上の通りです。きちんと代入して計算ミスなく解きましょう。

それではこの調子でいくつか解いてみましょう。



  <数列の画像が表示されていません!>  の解を求めよ。 ただしak = k とする

同じく定義に忠実に考えてみます。
  <数列の画像が表示されていません!>  
今回の問題の場合にはakという式に、k=2からk=6の数字を代入して足し合わせるということになるので 計算すると上の通りです。



  <数列の画像が表示されていません!>  の解を求めよ。 ただしak = 2k - 1とする


定義に忠実に考えてみます。
  <数列の画像が表示されていません!>  
今回の問題の場合にはakという式に、k=1からk=5の数字を代入して足し合わせるということになるので 計算すると上の通りです。



  <数列の画像が表示されていません!>  の解を求めよ。 ただしak = 3・2k-1 とする


同じく定義に忠実に考えてみます。
  <数列の画像が表示されていません!>  
今回の問題の場合にはakという式に、k=1からk=6の数字を代入して足し合わせるということになるので 計算すると上の通りです。



  <数列の画像が表示されていません!>  の解を求めよ。 ただしak = 2k2 とする


同じく定義に忠実に考えてみます。
  <数列の画像が表示されていません!>  
今回の問題の場合にはakという式に、k=3からk=5の数字を代入して足し合わせるということになるので 計算すると上の通りです。



今回はΣの定義について触れたかっただけなので、この程度にしておきます。
今後、等差数列や等比数列の公式の形に触れていきますが、多くの受験生は公式ばかりを覚えて基本的な事項の理解を怠りがちです。 数列のΣの表記方法についてもいまいち理解していない学生も多く見かけるので、今回のような基礎的な内容についてもきちんと抑えておきましょう。